
www.manaraa.com

Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2009

Automated offspring sizing in evolutionary algorithms Automated offspring sizing in evolutionary algorithms

André Chidi Nwamba

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Nwamba, André Chidi, "Automated offspring sizing in evolutionary algorithms" (2009). Masters Theses.
6784.
https://scholarsmine.mst.edu/masters_theses/6784

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6784?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6784&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

www.manaraa.com

AUTOMATED OFFSPRING SIZING IN EVOLUTIONARY ALGORITHMS

by

ANDRÉ CHIDI NWAMBA

A THESIS

Presented to the Faculty of the Graduate School of

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2009

Approved by

Dr. Daniel Tauritz, Advisor
Dr. Ralph Wilkerson

Dr. Ron Frank

www.manaraa.com

Copyright 2009

André Chidi Nwamba

All Rights Reserved

www.manaraa.com

iii

ABSTRACT

Evolutionary Algorithms (EAs) are a class of algorithms inspired by biological

evolution. EAs are applicable to a wide range of problems; however, there are a

number of parameters to set in order to use an EA. The performance of an EA is

extremely sensitive to these parameter values; setting these parameters often requires

expert knowledge of EAs. This prevents EAs from being more widely adopted by non-

experts. Parameter control, the automation of dynamic parameter value selection, has

the potential to not only alleviate the burden of parameter tuning, but also to improve

performance of EAs on a variety of problem classes in comparison to employing fixed

parameter values. The science of parameter control in EAs is, however, still in its

infancy and most published work in this area has concentrated on just a subset of the

standard parameters. In particular, the control of offspring size has so far received

very little attention, despite its importance for balancing exploration and exploitation.

This thesis introduces three novel methods for controlling offspring size: Self-

Adaptive Offspring Sizing (SAOS), Futility-Based Offspring Sizing (FuBOS), and

Diversity-Guided Futility-Based Offspring Sizing (DiGFuBOS). EAs employing these

methods are compared to each other and a highly tuned, fixed offspring size EA

on a wide range of test problems. It is shown that an EA employing FuBOS or

DiGFuBOS performs on par with the highly tuned, fixed offspring size EA on many

complex problem instances, while being far more efficient in terms of fitness evalu-

ations. Furthermore, DiGFuBOS does not introduce any new user parameters, thus

truly alleviating the burden of tuning the offspring size parameter in EAs.

www.manaraa.com

iv

ACKNOWLEDGMENT

First and foremost, I would first like to thank my advisor, Dr. Daniel Tauritz, for

his advice and support; this thesis would not have been possible without it. I would

also like to thank Dr. Ron Frank and Dr. Ralph Wilkerson for their participation

on my thesis committee. I want to thank the Missouri S&T Deparment of Computer

Science for the financial support it provided. Finally, I want to thank my family,

especially my Mom and Dad, for all the obvious reasons.

www.manaraa.com

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENT .. iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . viii

NOMENCLATURE .. ix

SECTION

1. INTRODUCTION .. 1

1.1. MOTIVATION .. 1

1.2. EVOLUTIONARY ALGORITHMS. 4

1.3. OVERVIEW .. 6

2. RELATED WORK .. 8

2.1. PARAMETER CONTROL .. 8

2.2. ADAPTIVE AND SELF-ADAPTIVE PARAMETER CONTROL.. . . . 8

2.3. EXPLORATION VS. EXPLOITATION.. 9

2.3.1. Offspring Size Control . 9

2.3.2. Diversity Guided EA. 10

2.3.3. Prior Work . 11

3. METHODOLOGY.. 13

3.1. SELF-ADAPTIVE OFFSPRING SIZING.. 13

3.2. FUTILITY-BASED OFFSPRING SIZING.. 16

3.3. DIVERSITY-GUIDED FUTILITY-BASED OFFSPRING SIZING 18

4. EXPERIMENTAL DESIGN .. 22

4.1. EXPERIMENTS . 22

4.2. TEST SUITE . 25

4.3. PERFORMANCE METRICS . 27

5. RESULTS . 30

6. DISCUSSION .. 38

6.1. RANDOM OFFSPRING SIZING .. 38

6.2. SELF-ADAPTIVE OFFSPRING CREATION.. 39

www.manaraa.com

vi

6.3. FUTILITY-BASED OFFSPRING SIZING.. 40

6.4. DIVERSITY-GUIDED FUTILITY-BASED OFFSPRING SIZING 41

7. CONCLUSIONS . 43

APPENDIX. 46

BIBLIOGRAPHY .. 49

VITA . 52

www.manaraa.com

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 An example of a well-behaved search space . 2

1.2 The Ackley Function [1] on R2: an example of a search space with an
exponentially increasing number of local optima. 3

1.3 EA Overview . 4

1.4 Evolutionary Cycle . 5

4.1 The Griewank function on R2 . 28

5.1 λ over the course of the execution of FuBOS-EA and DiGFuBOS-EA on
the DTRAP problem with µ = 100 averaged over 60 runs 32

5.2 λ over the course of the execution of the SAOS EAs on the DTRAP
problem with µ = 100 averaged over 60 runs. 32

5.3 Fitness of best individual over the course of the execution of the SAOS
EAs on the DTRAP problem with µ = 100 averaged over 60 runs 33

5.4 λ over the course of the execution of FuBOS-EA and DiGFuBOS-EA on
the DTRAP problem with µ = 500 averaged over 60 runs 33

5.5 λ over the course of the execution of the SAOS EAs on the DTRAP
problem with µ = 500 averaged over 60 runs. 34

5.6 λ over the course of the execution of FuBOS-EA and DiGFuBOS-EA on
the DTRAP problem with µ = 1000 averaged over 60 runs 34

5.7 λ over the course of the execution of the SAOS EAs on the DTRAP
problem with µ = 1000 averaged over 60 runs . 35

www.manaraa.com

viii

LIST OF TABLES

Table Page

4.1 Aliases for EAs . 23

4.2 EA parameters used in the experiments on ONEMAX problem 23

4.3 EA parameters used in the experiments on 3-SAT problem. 24

4.4 EA parameters used in the experiments on DTRAP problem 24

4.5 EA parameters used in the experiments for GRIEWANK problem. 24

4.6 Number of fitness evaluations used to tune OFOS-EA . 25

4.7 Values for offspring size found when manually tuning OFOS-EA. 25

5.1 Performance of EAs on various problems in terms of the metrics specified
in Section 4 (standard deviation in parentheses, best results are bolded) . . 31

5.2 Performance of EAs on the 3-SAT problem for different clause to variable
ratios (standard deviation in parentheses, best results are bolded) with
µ = 500. 36

5.3 Performance of some offspring sizing EAs on various problems in terms
of metrics specified in Section 4 with µ = 1 (standard deviation in paren-
theses, best results are bolded) . 37

www.manaraa.com

ix

NOMENCLATURE

Symbol Description
λ Offspring Size
µ Population Size

www.manaraa.com

1. INTRODUCTION

1.1. MOTIVATION

Computers are becoming increasingly common in many fields, allowing people

to solve problems that would not have been feasible before. However, the problems

that need to be solved are growing in complexity. There is a widening gap between

how much computational power current technology yields, and the amount of com-

putational power needed to solve current problems in a reasonable amount of time.

One of the ways to reduce this “computation gap” is to create more computationally

efficient algorithms. One often used way of improving the efficiency of an algorithm is

to take problem-specific information into consideration when designing the algorithm.

However, it takes considerable time and effort to create problem-specific algorithms,

and they usually can only be modified to solve similar problems. A method for solv-

ing these complex problems that requires little modification to solve a wide range of

problems would be very useful, and such methods exist, e.g., hill climbing-algorithms,

simulated annealing, and local beam search. The aforementioned methods perform

well when the search space is well-behaved, like the search space shown in Figure 1.1.

Unfortunately, real world problems typically have an ill-behaved search space. An ill-

behaved search space is one that has certain undesirable traits, such as discontinuities

and an exponentially increasing number of local optima (see Figure 1.2) in respect to

problem size. On such problems, these algorithms often perform poorly. For those

search spaces, we need more robust solution methods. One class of such methods is

Evolutionary Algorithms.

An Evolutionary Algorithm (EA) is a stochastic, population-based, optimization

algorithm that is inspired by concepts from biological evolution, such as recombina-

tion, mutation, and natural selection. The EA starts off with a pool of potential

solutions to a problem. From this pool of potential solutions, new solutions are cre-

ated. All these potential solutions undergo natural selection; the solutions compete

with one another and the “weaker” ones die out. This process is repeated until some

user-defined termination condition is met.

www.manaraa.com

2

-4

-2

 0

 2

 4
-4

-2

 0

 2

 4

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

Figure 1.1: An example of a well-behaved search space

One of the major problems with EAs is the large number of strategy parameters

the user must set. The performance of EAs is extremely sensitive to how these

parameters are set, and setting these parameter values is a non-trivial task. The

optimal value for these parameters is problem specific: there does not exist an optimal

configuration for all EAs. Furthermore, there is interaction among parameters: the

effect that one parameter has on the performance of the EA is dependent on what

the other parameters are.

Parameter values can either remain fixed throughout the execution of the EA or

change and adapt during the execution of the EA. Typically, standard EAs use fixed

parameter values; manual tuning is the usual approach one takes when determining

how to set these values. This process often involves executing test runs of an EA with

different configurations to find a “good” set of parameters. Parameter control involves

introducing an algorithm that changes and adapts the value used for a parameter

during the execution of the EA. Using parameter control often requires less manual

www.manaraa.com

3

-4

-2

 0

 2

 4
-4

-2

 0

 2

 4

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16

-2
 0
 2
 4
 6
 8
 10
 12
 14
 16

Figure 1.2: The Ackley Function [1] on R2: an example of a search space with an
exponentially increasing number of local optima

tuning than using fixed parameter values. One reason for this is the performance of

an EA using parameter control is typically less sensitive to the initial values used for

those parameters than in an EA using fixed parameter values.

Parameter control in EAs has been both empirically and theoretically shown to

be potentially beneficial in terms of improved performance on a variety of problem

classes in comparison to the use of fixed parameter values, due to different parameter

values being optimal at different stages of the evolutionary process [7]. An additional

benefit is that parameter control has the potential to alleviate the burden of parameter

tuning, either by removing the need to set a parameter altogether or by replacing the

original parameter to be tuned with a new parameter to which performance is less

sensitive. This is a significant benefit because, despite the efforts of many researchers

in the field, parameter tuning remains to this day a very difficult and time-consuming

task, often requiring significant expertise and thus preventing EAs from being more

www.manaraa.com

4

Figure 1.3: EA Overview

widely adopted by practitioners.

1.2. EVOLUTIONARY ALGORITHMS

One can think of an EA as a black box with three separate inputs, as shown

in Figure 1.3. Two of these inputs are pieces of problem specific information: a

representation and a fitness function. A representation is simply a way to represent a

candidate solution to your problem. Commonly used representations are bitstrings,

real-valued vectors, and trees. For instance, if the problem is finding the maximum

value of f(~x) = Σn
i=1xi, then a candidate solution to this problem could be a real-

valued vector of length n. The representation of a candidate solution is analogous to

the genes of an organism. A fitness function maps a candidate solution to a linear

scale based on how well it solves the problem, with the fitness value begin proportional

to the quality of the solution. The fitness function must have some gradient to the

values it assigns, i.e., it can not assign a fitness value of 1 to the optimal solution

and a fitness value of 0 to any other solution as that would result in the EA doing no

better than random search. The last input required for the EA is a set of strategy

parameters. Examples of strategy parameters include population size, offspring size,

www.manaraa.com

5

Figure 1.4: Evolutionary Cycle

mutation rate, termination condition, choice of recombination operators, and choice

of selection operators.

Looking inside the black box, one will find that the basic structure of an EA is

very simple, as shown in Figure 1.4. The first task an EA performs is the creation

of the initial population, a set of individuals. An individual contains a candidate

solution and possibly additional genes or attributes. For an example of when an in-

dividual would have additional genes, see Section 2.2. Each candidate solution in the

initial population can be generated in a variety of ways, including randomly, using

a heuristic, and reusing results from a previous run. Once the initial population is

created, the EA evaluates each individual in the population and assigns them a fit-

ness value using the fitness function. Once every individual in the population has a

fitness value, the EA enters the evolutionary cycle and parents are selected. There

are numerous ways for a parent to be selected, and they usually are biased towards

picking fitter individuals, i.e., individuals with higher fitness values. Once the parents

have been selected, they undergo recombination with a certain probability. Through

recombination, new individuals, referred to as the offspring, are created by using

www.manaraa.com

6

genes from each parent. How these offspring are created depends partially on the

representation of the individual; there are numerous recombination methods for a

given representation. Once created, the offspring undergo, with a certain probabil-

ity, mutation; the genes of an individual get slightly modified. Too much mutation

and EAs degrade into random search. Too little and the EA can get “stuck” on a

suboptimal solution. Once created, the offspring get assigned fitness values via the

fitness function. Once all the offspring have been created, the EA needs to determine

which individuals survive to form the new population. There are numerous methods

to select the survivors, and they usually are biased towards killing off weaker indi-

viduals, i.e., individuals with lower fitness values. The survivors will form the new

population, and the EA will have completed one generation. After each generation,

the EA checks some termination criteria. This could be based on a variety of things,

such as the number of fitness evaluations that have been performed, the number of

generations that have occurred, and the average fitness of the population reaching

a certain threshold. If the termination criteria has not been met, then parents are

selected and another generation occurs. If the termination criteria has been met, then

the EA terminates. The solution typically is the best individual in the population at

the end of the final generation.

1.3. OVERVIEW

The science of parameter control in EAs is still in its infancy and most published

work in this area has concentrated on just a subset of the standard parameters, in

particular mutation step size [14, 25], population size [2, 26, 9], choice of recombina-

tion from a predefined set [4], and parent selection [15, 27, 16]. For a detailed review,

see for instance [10, §8.5] or [5]. Yet, the control of the offspring size parameter, λ, has

so far received very little attention, despite its importance for balancing exploration

and exploitation [5].

The focus of this thesis is controlling λ. Section 3 introduces three novel methods

to achieve this goal: Self-Adaptive Offspring Sizing (SAOS), Futility-Based Offspring

Sizing (FuBOS), and Diversity-Guided Futility-Based Offspring Sizing (DiGFuBOS).

SAOS takes a more natural approach to controlling λ. The choice of λ, normally

determined at the population level in EAs, is determined at the individual level.

www.manaraa.com

7

Each individual chooses how many offspring they want to have. Each individual is

penalized based on how many children they have had, and their fitness is adjusted

accordingly. FuBOS controls λ on a per generation basis without even requiring the

user to set an initial offspring size value. This is done by observing the change in

average fitness of all the offspring with each offspring created. This change is com-

pared to a threshold value to determine if it would be useful to generate additional

offspring in the current generation, thus dynamically adjusting the balance between

exploration and exploitation. DiGFuBOS extends the concept of FuBOS by dynami-

cally changing the threshold value every generation based on the genetic diversity of

the population, the population size, and the problem size.

www.manaraa.com

8

2. RELATED WORK

2.1. PARAMETER CONTROL

As mentioned in Section 1, parameter control is desirable due to its potential

to improve the performance of EAs and to alleviate the burden of manually tuning

parameters. Most published work has focused on only a few strategy parameters. In

Evolutionary Strategies (ES), much progress has been made in controlling mutation

step size. Covariance Matrix Adaptation (CMA), a method for controlling mutation

step sizes, is currently one of the most powerful techniques for single-objective, real-

valued, numerical optimization [17]. The basic idea is to use the “path” the EA travels

on through the search space to update different CMA parameters. These parameters

control the mutation step size.

Other components of an EA can be controlled also. For example, penalty func-

tions are often used when dealing with constrained optimization problems. Usually,

one defines a penalty function using the method of static penalties [21] because an

existing EA requires very little modification to use this method. However, the method

of static penalties introduces 2c + 1 new parameters, where c is the number of con-

straints. Eiben et al. [8] showed that the parameters involved with defining a penalty

function can be successfully controlled without the EA “cheating” by minimizing

the parameter values associated with the penalty function instead of satisfying the

constraints.

2.2. ADAPTIVE AND SELF-ADAPTIVE PARAMETER CONTROL

One commonly used method for parameter control in EAs is adaptation. Adap-

tation works by having a function, whose inputs are some form of feedback from the

search, determine the magnitude and/or direction of the change to the parameters.

One classic example of this is Rechenberg’s 1/5 success rule [23] for controlling the

mutation step size in Evolutionary Strategies. This rule states that one-fifth of muta-

tions should be successful, i.e., one-fifth of the offspring created should be fitter than

their parents. When the ratio between successful mutations and all mutations drops

www.manaraa.com

9

below one-fifth, then the mutation step size is increased to widen the width of the

search; conversely, if the ratio is higher than one-fifth, then the mutation step size

decreases to concentrate the search around the current solutions.

Another method used for parameter control in EAs is self-adaptation. Self-

adaptation works by encoding the parameters to be adapted into the genes of an

individual. The encoded parameters undergo mutation and recombination along with

the encoded candidate solution. The idea is that high quality individuals are created

under ideal circumstances; in other words, when the EA’s parameters are optimal

considering the current state of the search. Self-Adaptation has been successfully

used to control mutation step sizes [14]. However, using self-adaptation in EAs can

lead to premature convergence [24], i.e., the individuals in the population converge

to suboptimal solutions. Regardless, self-adaptation is known to be a highly robust,

state-of-the-art adaptation technique that works well in real-valued search spaces [5].

2.3. EXPLORATION VS. EXPLOITATION

For an EA to be effective, it must balance exploration vs. exploitation. Ex-

ploration refers to creating new individuals in unvisited areas of the search space.

In general, when EAs spend more time exploring the search space, this leads to the

EA finding higher-quality solutions. Less exploration tends to result in premature

convergence. Exploitation refers to creating new individual near areas where known

good solutions have been found. When too little exploitation occurs, the EA does not

take advantage of known good solutions and the progress of the search suffers. When

too much exploitation occurs, the EA does not explore the search space thoroughly

enough, leading to premature convergence.

2.3.1. Offspring Size Control. Determining the appropriate value for λ at

any given point of an EA’s execution is a difficult task; the optimal value for λ varies

based on the problem, the other EA strategy parameters used, the EA’s progress

through the search space, various observed variables such as the rate of change of the

average population fitness, and the termination condition. When λ is set too low,

the possibility for premature convergence increases, especially for problems with a ill-

behaved fitness landscape; while setting λ too high results in wasted computational

effort [18].

www.manaraa.com

10

λ is inversely proportional to the number of generations that occur during the

execution of an EA, assuming a fixed value for λ and a predetermined number of

fitness evaluations to be performed. Having more offspring per generation will result

in a decreased number of generations, which means there will be less exploitation of

the population [5]. Conversely, having less offspring per generation will result in more

generations, but the number of offspring produced per generation is directly related

to how much the EA explores the search space. So less offspring per generation

implies less exploration performed, which can lead to premature convergence [5], in

particular on more complex fitness landscapes. So the goal is to balance the number

of offspring per generation and the number of generations, i.e., to balance exploration

and exploitation. Note, also, that the optimal balance can shift during the execution

of the EA because different values for λ may be appropriate at different points in an

EA’s execution [7].

2.3.2. Diversity Guided EA. Ursem [28] created a method for controlling

the balance between exploration and exploitation in EAs. The Diversity Guided

EA (DGEA) alternates between two different modes: exploration and exploitation.

The DGEA starts in exploitation mode, and to determine which mode the DGEA

is in, a diversity metric is compared to two manually-tuned threshold values, dlow

and dhigh. While the DGEA is in exploitation mode, it behaves like a typical EA.

Diversity-reducing operators, such as survivor selection, are used by the DGEA until

the diversity drops below a certain level specified by dlow, then the DGEA switches

to exploration mode. While in exploration mode, the DGEA mutates the population

until the diversity is above dhigh. Then it switches back to exploitation mode. The

diversity metric used by the DGEA on an N -dimensional problem is:

diversity(P) =
1

|L| |P |
|P |∑
i=1

√√√√
N∑

j=1

(sij − s̄j)2, (1)

where P is the population, sij is the j-th gene of the i-th individual, s̄j is the average

of the j-th gene over the population, and |L| is the length of the diagonal of the search

space, RN . Assuming each gene, xi, is bounded above and below by xmax and xmin

www.manaraa.com

11

respectively, |L| is defined as follows:

|L| =
√

N · (xmax − xmin)2. (2)

2.3.3. Prior Work. There have been many successful attempts at using

parameter control to reduce or eliminate the burden of selecting parameters a priori

while maintaining or improving the performance of an EA [5]. However, very little

work has been done in regard to dynamically controlling λ. Hansen et al. [13] devised

a method for adjusting λ for (1,λ) Evolutionary Strategies (ESs) based on the second

best individual created, the λ used last generation, and a manual-tuned parameter

controlling adaptation speed. The goal of this strategy is to maximize the local

serial progress-rate, i.e., the expected fitness gain per fitness evaluation. However,

maximizing the local serial progress-rate is equivalent to maximizing the convergence

rate, which often leads to premature convergence on complex fitness landscapes.

Jansen et al. [18] created a method for adjusting λ for (1+λ) ESs based on the

number of offspring that are fitter than their parent. When none of the offspring

created during a generation are fitter than their parent, λ is doubled; otherwise, λ is

divided by the number of offspring that are fitter than the parent. The idea being

that λ is increased quickly when it appears to be too small, and decreased based on

the current success rate when it appears to be too large. While this approach was

empirically shown to work well for less complex fitness landscapes, it had problems

with more complex fitness landscapes that require a larger value for λ. On a complex

fitness landscape, a larger λ is required to ensure that successful offspring lie on the

path to the global optimum. However, it is impossible to know how many offspring lie

on this path without a priori knowledge of the fitness landscape. So while the method

proposed by Jansen et. al. does allow for λ to increase quickly, they concluded that

there is no way of knowing how large λ needs to grow a priori without using knowledge

of the problem. Thus, λ grew to smaller, suboptimal values instead.

The aforementioned methods were created for ESs with a population size, µ,

of one. Although it is possible that these methods could be generalized for any

population size, these methods inherently have drawbacks that prevent them from

being well-suited for complex fitness landscapes. The Hansen method prematurely

www.manaraa.com

12

converges due to its goal of maximizing the convergence rate, and the Jansen method

tends to grow λ to smaller, suboptimal values. These deficiencies are independent

from µ.

In [13], the concept of a “cut-off point” is introduced. This is the point during

the mating process where having additional offspring will result in additional cost with

negligible benefit to the search, i.e., the additional search space explored by having

an additional offspring is not worth the computational effort required to create the

offspring and evaluate its fitness. While determining the cut-off point can be done

a priori employing asymptotical analysis for certain situations [13], it is usually far

more difficult and time-consuming to do this than to manually tune λ. However, this

concept can be used to determine how many offspring should be created during any

given generation.

www.manaraa.com

13

3. METHODOLOGY

3.1. SELF-ADAPTIVE OFFSPRING SIZING

EAs are biologically inspired, so it makes sense to look at nature for inspiration

for how to control λ. In standard EAs, λ is fixed throughout its execution with λ

offspring being created each generation; however, this is not what happens in nature.

In nature, λ is determined at the individual level: each individual decides how many

offspring it wants to have. An individual is free to have as few or as many offspring

as it desires, but there are consequences. There is a limited amount of resources in

any environment, such as food and space. If too many offspring are created, there

will not be enough resources for each individual. In many animal species, parents

support their offspring. There is only a finite amount of support a parent can give;

more offspring for the parent to support results in less support for each individual

offspring.

Individuals in typical EAs have no intelligence to make decisions with. However,

by encoding the amount of offspring an individual wants to have into the gene of that

individual, self-adaptation can be used to control the desired amount of offspring that

individual wants to produce. Self-Adaptive Offspring Sizing (SAOS) uses this idea

to control λ. SAOS allows each individual to specify how many living offspring they

would like to have. During each generation, individuals mate until each individual

has as many living offspring as it desires. Since the amount of offspring an individual

wants to have is encoded into the genes of that individual, this desire gets passed

down from parent to offspring. However, implementing this by itself has one main

problem. An individual who wants to have many offspring will have all the offspring it

desires and will pass down that desire to each of its offspring. These offspring will also

have many offspring, passing down the desire to their offspring. The individuals who

have many offspring will overwhelm those individuals who want to have few offspring

with their sheer numbers. This means that there is the possibility of λ growing over

time without bound. As mentioned in Section 1, when λ is too high, convergence

speed decreases. Since each offspring created needs to be evaluated, this results in

www.manaraa.com

14

the EA using its fitness evaluations inefficiently. One way of preventing unbounded

growth of λ is to penalize each individual for each offspring it produces. This penalty

is analogous to the support parents provide for their offspring seen with many higher

organisms.

Algorithm 1 Self-Adaptive Offspring Sizing EA

initialize pop
for each P ∈ pop do

PoffWant = 1
end for
evaluate fitnesses of pop
while termination condition has not been met do

off ← ∅
while there exist unsatisfied parents in pop do

if there are k or more unsatisfied parents in pop then
select k unsatisfied parents

else
clone all unsatisfied parents

end if
parents mate to create offspring o
set ooffWant to average of parents’ offWant
ooffWant ← ooffWant + N(0, .2)
evaluate fitness of o
off ← o ∪ off

end while
select survivors using score instead of fitness value

end while

SAOS, outlined in Algorithm 1, gives each individual in the population, pop,

an additional gene: offWant. offWant indicates the number of living offspring an

individual wants to have. Each individual’s offWant can be no less than 1 and no

greater than µ. The lower bound on offWant ensures that there are individuals in

the population that want offspring. Without the lower bound, evolution can come

to a halt due to no individual in the population wanting to have offspring. The

upper bound on offWant helps prevent λ from growing without bound. Based on

emperical results, µ was determined to be a good value for the upper bound. Due

www.manaraa.com

15

to this restriction, there is an upper bound on the amount of offspring created per

generation, µ2. For example, if µ = 3, then the largest λ can be is 9 regardless of the

problem size or the other parameter values. So the value of µ must be large enough

in order to not restrict λ from growing to an appropriate value; thus, it would be

impractical to use SAOS on an EA with µ = 1.

For each generation, k “unsatisfied” parents are selected and have a single off-

spring together. A parent is considered unsatisfied if the amount of offspring they

have created this generation plus the amount of offspring they have in the current pop-

ulation are less than their offWant. The offspring’s offWant is the average value of

the parents’ offWant. Each offspring’s offWant is then mutated by adding N(0, .2)

to it, where N(0, .2) is a random value from a normal distribution with a mean of 0

and a variance of .2. The random value is chosen from a normal distribution because

there is a high probability of the random value being close to 0, and a low probability

of it being far from 0. There is a small chance for a large amount of mutation, and

a large chance for a small amount of mutation. In general, this is a desirable way to

perform mutation. The value of .2 was determined experimentally to be a good value

to use for the variance, although the value to use for the variance might be dependent

on other parameters, such as µ. This process is repeated until every individual is

“satisfied”. An individual is considered satisfied if it is not unsatisfied. At the end of

each generation, all of the offspring, off , and individuals in pop get assigned a score

based on a score function. The score of the individual is used in lieu of their fitness

values during survivor selection.

The use of different score functions was examined in order to find one that best

balances the need to have offspring to explore the search space and the need to keep

the number of offspring being created in check:

score1(ind) = (f(ind)− min
ind∈pop∪off

f(ind)) · (µ− indoffWant), (3)

score2(ind) =
f(ind)−minind∈pop∪off f(ind)

indoffWant

, (4)

www.manaraa.com

16

and

score3(ind) = (f(ind)− min
ind∈pop∪off

f(ind)) · (µ− indoffWant) · (µ− indsiblings) (5)

where f(i) is the fitness value of individual i, isiblings is the number of individuals

in pop∪off that share a parent with i, and µ is the population size. score3 penalizes

large “families” as an additional measure to keep λ in check. As shown in Section 5,

each score function has its respective problems.

3.2. FUTILITY-BASED OFFSPRING SIZING

Futility-Based Offspring Sizing (outlined in Algorithm 2) was created in re-

sponse to the problems present in SAOS, which shall be discussed in Section 6. The

change in genetic diversity of the offspring with each new offspring generated so far

in a particular generation can be used as a metric for determining how much the

EA benefits from having additional offspring. As the change in genetic diversity ap-

proaches zero, the amount of reachable search space not explored by the offspring

approaches zero too. While calculating genetic diversity is trivial for simple repre-

sentations (e.g., bitstrings and real-valued vectors), this can be a problem for more

complex representations (e.g., tree structures). Using the change in average fitness

of the offspring is a less accurate metric for determining how much search space is

being covered by the offspring, but it can be applied regardless of representation.

Also, methods for calculating genetic diversity tend to be computationally expensive

(e.g., pairwise Hamming distances), but calculating the change in average fitness of

the offspring can be done in constant time.

FuBOS determines when it is futile to create more offspring, i.e., when the

computational effort required to create additional offspring outweighs how much these

additional offspring contribute to the progress of the search. To do this, it uses the

offspring created during a given generation to decide if the mating process should

continue. At the beginning of the mating process, two offspring, o1 and o2, are

created. The average fitness of the offspring before o2 was created is compared to

the average fitness of the offspring after o2 was created. If the difference between

those fitness values becomes sufficiently small, the mating process stops; otherwise,

www.manaraa.com

17

Algorithm 2 Futility-Based Offspring Sizing EA

initialize pop
evaluate fitnesses of pop
while termination condition has not been met do

off ← ∅
while |offspring| < 2 and Inequality 6 is true do

select parents
parents mate to create offspring o
evaluate fitness of o
off ← o ∪ off

end while
select survivors

end while

another offspring is created and the change in the average fitness is examined again.

When the mating process stops, it is because on has a negligible small impact on the

average fitness of the offspring. Thus, it is assumed that the additional search space

explored by creating on+1 is not worth the computational effort required to create

on+1 and evaluate its fitness. This means we have reached the cut-off point, and

having additional offspring will not be beneficial for the search.

For the mating process to continue, FuBOS checks to see if the following condi-

tion is satisfied after an offspring has been created:

min
(∣∣∣
Pn

i=1 F (oi)

n

∣∣∣ ,
∣∣∣
Pn−1

i=1 F (oi)

n−1

∣∣∣
)

max
(∣∣∣
Pn

i=1 F (oi)

n

∣∣∣ ,
∣∣∣
Pn−1

i=1 F (oi)

n−1

∣∣∣
) < 1− ε (6)

where ε = .000001, oi is the i-th offspring created this generation, and n is the number

of offspring created this generation so far. Inequality 6 compares the average fitness

of the offspring with the average fitness of the offspring excluding the most recently

created offspring, on. The .000001 value for ε was initially determined experimentally

using the DTRAP problem described in Section 4. Other values tested for ε resulted

in a difference in performance of less than 1%, leading us to conclude that performance

is far less sensitive to ε than λ. The sensitivity of the performance of FuBOS to ε

was also examined using another problem and also found to be less sensitive than λ.

Further analysis of the sensitivity of the performance of FuBOS to ε will need to be

www.manaraa.com

18

performed in the future.

The left side of Inequality 6 produces a ratio (between 0 and 1 inclusive) between

the average fitness of the offspring before the last offspring was created and the average

fitness of the offspring after the last offspring was created. This is done to normalize

the fitness values, as to mitigate the effects that the range of the fitness function could

have when attempting to determine the magnitude of the change of the average fitness

of the offspring. This ratio also indicates how the average fitness of the offspring has

changed: if the ratio is close to 1, that means the change in the average fitness of the

offspring is small.

If Inequality 6 is no longer true, this implies that on has a negligible small

impact on the average fitness of the offspring. Based on this, it can be said that

FuBOS attempts to maximize the amount of search space covered by the offspring

while minimizing the wasted computational effort associated with producing too many

offspring. By doing this, FuBOS can find the appropriate balance between exploration

and exploitation.

3.3. DIVERSITY-GUIDED FUTILITY-BASED OFFSPRING SIZING

The biggest problem with FuBOS lies in the choice of ε. Although ε is a less

sensitive parameter than λ, it would still be beneficial for the choice of ε to be auto-

mated. Diversity-Guided Futility-Based Offspring Sizing (DiGFuBOS) is a method

for controlling λ that involves no additional parameters. DiGFuBOS (outlined in

Algorithm 3) is similar to FuBOS, but differs from it in two ways. First, instead

of looking at the change in average fitness, DiGFuBOS looks at the change in ge-

netic diversity by actually looking at the genes of individuals. This change was made

because different individuals can have the same fitness value, and that might cause

FuBOS to terminate the mating process early. Genetic diversity was measured using

“moment-of-inertia”, a diversity measurement introduced by Morrison and De Jong

[22].

The formula used to calculate the genetic diversity of the offspring, offdiversityN ,

www.manaraa.com

19

is as follows:

offdiversityN =
L∑

i=1

N∑
j=1

(xij − ci)
2, (7)

where L is the length of the genotype (the number of bits in a bitstring or elements of

a real-valued vector), N is the amount of offspring created so far during the current

generation, xij is the i-th gene of the j-th offspring, and ci, the average of the i-th

gene over the offspring, is defined as:

ci =

∑N
j=1 xij

N
. (8)

The computation of the moment-of-inertia has O(n2) complexity, while the traditional

method for calculating the pair-wise hamming/Euclidean distance has O(n3) com-

plexity. For DiGFuBOS, genetic diversity is calculated iteratively with each offspring

created, so the complexity of each method is reduced to O(n) and O(n2), respectively.

Note, though, that the moment-of-inertia is equal to the pair-wise hamming distance

divided by the population size when applied to bitstrings. By examining the genetic

diversity of the offspring by looking at their genes, the applicability of DiGFuBOS is

reduced to EAs using bitstrings and real-valued vectors for representations; however,

this allowed for the “ε problem” of FuBOS to be neatly solved.

The second difference between FuBOS and DiGFuBOS is that ε is not set a

priori and fixed throughout the EA’s execution, but controlled during its execution

without the need to set an initial value for ε. ε affects how many offspring are created.

When ε is low, it is likely that more offspring will be created; the opposite is true

when ε is high. Consider the following situations. When µ is low, there is need to have

many offspring due to the fact that little genetic information is carried over between

generations. When µ is high, the need for offspring is reduced due to the large amount

of genetic information being saved between generations. Genetic diversity and λ are

similarly related. When there is very little genetic diversity, it would be beneficial to

have more offspring in order to increase exploration of the search space and to help

prevent premature convergence. Also, larger problems need larger values of λ due to

how much more additional search space there is to explore.

www.manaraa.com

20

Algorithm 3 Diversity-Guided Futility-Based Offspring Sizing EA

initialize pop
evaluate fitnesses of pop
while termination condition has not been met do

if popdiversity 6= 0 then
set ε according to Equation 9

end if
off ← ∅
while |offspring| < 2 and Inequality 13 is true do

select parents
parents mate to create offspring o
evaluate fitness of o
off ← o ∪ off

end while
select survivors

end while

DiGFuBOS sets ε using the following equation:

ε =
µ · popdiversity

L
, (9)

where L is the length of the bitstring or real-valued vector and popdiversity

is a modified version of the diversity metric used in the Diversity Guided EA [28].

popdiversity has a separate definition for bitstrings and real-valued vectors:

popdiversitybit =
2

Lµ

µ∑
i=1

√√√√
L∑

j=1

(sij − s̄j)2, (10)

popdiversityreal =
2

Dµ

µ∑
i=1

√√√√
L∑

j=1

(sij − s̄j)2, (11)

where sij is the j-th gene of the i-th individual, s̄j is the average of the j-th gene over

the population, and D is defined as follows:

D =

√
L

(
max
1<i<µ

max
1<j<L

sij − min
1<i<µ

min
1<j<L

sij

)
. (12)

www.manaraa.com

21

The rationale behind using a different formula for bitstrings lies in the fact that each

bit in a bitstring does not actually represent a number, but represents true or false. 0

and 1 are often used for values of a bitstring, but any two values could just as easily

be used. The co-domain of both popdiversitybit and popdiversityreal is [0, 1].

For the mating process to continue, DiGFuBOS checks to see if the following

condition is satisfied after the N -th offspring has been created:

offdiversityN−1

offdiversityN

< 1− ε (13)

Inequality 13 checks to see if the change in genetic diversity has become small. When

offdiversityN = 0, DiGFuBOS terminates the mating process due to the lack of

diversity in the offspring. If ε = 0, then Inequality 13 will always hold if there

exist two offspring that have different genes. A proof of this statement is presented

in the appendix. Since Inequality 13 always holds when ε = 0, offspring will be

produced indefinitely and the current generation will never be completed. ε = 0 only

when the population has no diversity (e.g., popdiversity = 0), and this can happen

when selective pressure is high enough on a complex fitness landscape. However,

the population of an EA tends to converge slowly over time. If the diversity of the

current population is 0, then it is likely that the diversity of the previous generation’s

population is close to 0. This would mean the previous value of epsilon would be a

good value to use. So when popdiversity = 0, then epsilon is not changed.

www.manaraa.com

22

4. EXPERIMENTAL DESIGN

4.1. EXPERIMENTS

To determine how the methods described in Section 3 effect the performance of

an EA, EAs using each of the methods described in Section 3 were compared to a

standard EA with a manually tuned value for λ, the Optimal Fixed Offspring Size EA

(OFOS-EA). Although OFOS-EA is impractical due to the large number of fitness

evaluations required to tune it (see Table 4.6), it provides an upper bound for the

performance of an EA using fixed values for λ. Also, the aforementioned methods

were compared to an EA using a random value for λ(∈ [1, 1000]) for each generation,

the Random Offspring Sizing EA (ROS-EA). This was done to examine the effect of

just changing λ per generation; it is possible that the fact that these methods change

λ every generation has more effect on the performance of an EA than how λ changes.

Also, FuBOS-EA, OFOS-EA, and ROS-EA were compared to an EA using the

offspring sizing method proposed by Hansen et al. (Hansen-EA) [13] and the method

proposed by Jansen et al. (Jansen-EA) [18]. Hansen-EA and Jansen-EA assume

µ = 1, so this set of experiments was conducted with µ = 1. DiGFuBOS requires

µ > 1, so DiGFuBOS-EA was not compared with Jansen-EA and Hansen-EA. Also,

since both Hansen-EA and Jansen-EA use elitist survivor selection methods, FuBOS-

EA, OFOS-EA, and ROS-EA all use Truncation for survivor selection. Due to the

constraints placed on the maximum number of offspring each individual can have

when using SAOS, the EAs using SAOS were also not compared with Jansen-EA and

Hansen-EA.

The EAs listed in Table 4.1 (excluding Hansen-EA and Jansen-EA) were all

tested using different population sizes to determine how well each λ control method

scales, in terms of performance, with µ. Due to the authors’ computation time con-

straints, 1000 was chosen for the largest population size. Based on that, values of 100

and 500 were chosen for the other population sizes. All the EAs used the same pa-

rameters on each of the 4 test problems (shown in Table 4.2, Table 4.3, Table 4.4, and

Table 4.5 respectively), to ensure fairness. These parameters were manually tuned

www.manaraa.com

23

Table 4.1: Aliases for EAs

Alias Description

OFOS-EA EA using manually tuned value for λ
ROS-EA EA using random value for λ

FuBOS-EA EA using FuBOS
DiGFuBOS-EA EA using DiGFuBOS

SAOS1-EA EA using SAOS with score1 function
SAOS2-EA EA using SAOS with score2 function
SAOS3-EA EA using SAOS with score3 function
Jansen-EA EA using method described in [13]
Hansen-EA EA using method described in [18]

Table 4.2: EA parameters used in the experiments on ONEMAX problem

Parameter Value

Initialization Each bit is initialized to
either 0 or 1 with a uniform probability

Parent Selection 6-1 Tournament
Survivor Selection Truncation when µ = 1, 3-1 Tournament otherwise

Recombination Uniform Crossover
Mutation Rate 1/l (l :=the length of the bitstring)

Termination Condition Optimal solution found

using OFOS-EA.

The following is an explanation of some of the parameters used in the experi-

ments. k-1 tournament selection is performed by picking k individuals and selecting

the “winner” of the tournament: the fittest individual out of those k individual. So

in terms of parent selection, the winner of the tournament is selected as a parent. In

terms of survivor selection, the winner of the tournament becomes part of the popu-

lation for the next generation. Truncation survivor selection means the survivors are

the top µ fittest individuals that are either newly-created offspring or currently in the

population.

The λ used by OFOS-EA for each experiment (which can be found in Table 4.7)

was determined by using the following method (which is outlined in Algorithm 4).

www.manaraa.com

24

Table 4.3: EA parameters used in the experiments on 3-SAT problem

Parameter Value

Initialization Each bit is initialized to
either 0 or 1 with a uniform probability

Parent Selection Random
Survivor Selection Truncation

Recombination Uniform Crossover
Mutation Rate 1/l (l :=the length of the bitstring)

Termination Condition 300,000 evals

Table 4.4: EA parameters used in the experiments on DTRAP problem

Parameter Value

Initialization Each bit is initialized to
either 0 or 1 with a uniform probability

Parent Selection Random
Survivor Selection Truncation when µ = 1, 4-1 Tournament

Recombination 2-point crossover
Mutation Rate 1/l (l :=the length of the bitstring)

Termination Condition 200,000 evals

Table 4.5: EA parameters used in the experiments for GRIEWANK problem

Parameter GRIEWANK

Initialization Each ~xi is chosen from
[−600, 600] with a uniform probability

Parent Selection 3-1 Tournament
Survivor Selection Truncation when µ = 1, 6-1 Tournament

Recombination Arithmetic crossover
Mutation Rate Self-Adaptive Mutation

Termination Condition 200,000 evals

First, the EA is executed with λ = 1 and the average of the performance metric used

for each problem (as previously specified in this subsection) over 30 runs and the

standard deviation of that metric is recorded. Then the EA is executed using λ = 25i

www.manaraa.com

25

Table 4.6: Number of fitness evaluations used to tune OFOS-EA

Population Size 1 100 500 1000

DTRAP 42,000,000 192,000,000 174,000,000 60,000,000
ONEMAX 6,673,542 4,887,021 14,942,448 21,668,019
GRIEWANK 42,000,000 90,000,000 84,000,000 36,000,000
3-SAT 54,000,000 279,000,000 369,000,000 657,000,000

Table 4.7: Values for offspring size found when manually tuning OFOS-EA

Population Size 1 100 500 1000

DTRAP 25 675 525 75
ONEMAX 1 1 75 225
GRIEWANK 1 275 100 25
3-SAT 1 425 600 1775

for i ∈ Z+, with the λmax being the value for λ that gave the best results. For each

value of λ, the EA is executed 30 times, or until it is determined that using that

value for λ gives significantly different results than when using λmax. This process

terminates once the best λ recorded is significantly better than 3 larger values for

λ. The point of this method is to not only find the best value for λ, but to also

reduce the amount of computation time required by looking for a downward trend in

performance as λ increases due to the decreasing number of generations. The reason

why λ increases by 25 and 3 strikes are used is to reduce the amount of computation

time required to manually tune OFOS-EA while still performing a thorough search.

The performance achieved by the EA when using different values of λ are compared

using the two-sample t-test with a significance level of .05 assuming unequal variances.

OFOS-EA required a significant amount of fitness evaluations to manually tune it, as

shown in Table 4.6.

4.2. TEST SUITE

All EAs were compared using test problems of various fitness landscapes: the

“counting ones” problem (ONEMAX), the 4-bit bounded deceptive trap problem

www.manaraa.com

26

Algorithm 4 Manual Tuning Algorithm

λ = 1
MBFbest = MBFλ = EA(λ)
λ = 25
strikes = 3
repeat

MBFλ = EA(λ)
if MBFλ > MBFbest then

MBFbest = MBFλ

strikes = 3
end if
if MBFbest statistically significantly better than MBFλ then

strikes = strikes− 1
end if
λ = λ + 25

until strikes = 0

(DTRAP) [6], the Griewank function (GRIEWANK) [12], and a special case of the

boolean satisfiability problem (3-SAT). To maximize the differentiating power of the

experiments, the largest values were chosen for the problem sizes within the authors’

computation time constraints.

For ONEMAX, the goal is simply to maximize the number of bits in a bitstring

that are 1. For the experiments, a bitstring of length 2000 was used. This problem

is an easy problem for not only EAs, but most optimization algorithms. This is due

to the the fact that there is only one local optima: the global optima. As long as

mutation is applied to the offspring, there is a very low probability of premature

convergence.

For the DTRAP problem, a bitstring of length 4n composed of n (∈ N) 4-bit

trap functions is used. The trap function defined for a bitstring with x ones is as

follows:

fdtrap(x) =





4 if x = 4,

3− x otherwise.
(14)

For example, for the bitstring 0011 1011 1111, the values of each trap are 1, 0, and

www.manaraa.com

27

4 respectively. The DTRAP problem was chosen due to its “deceptive” nature. This

is an especially hard problem for EA solvers because a candidate solution’s fitness is

increased as its distance to the optimum increases. For the experiments, a bitstring

of length 1000 was used.

For the GRIEWANK problem, the goal is to minimize the following function

(which is plotted in Figure 4.1):

fGriewank(~x) =
n∑

i=1

~x2
i

4000
−

n∏
i=1

cos

(
~xi√

i

)
+ 1. (15)

where ~x is a real-valued vector of length n. For these experiments, a real-valued

vector of length 200 is used. The Griewank function is a well-known multi-modal

function that is widely used to test optimization algorithms. The number of local

optima increases exponentially as the number of dimensions of the problem increases

[20].

For the 3-SAT problem, instances with 500 variables were used. All EAs were

also tested on the 3-SAT problem with clause to variable ratios: 2, 3, 4, and 6 with

µ = 500. A clause to variable ratio of 4 was used for all other values of µ. Using

different clause to variable ratios tests how well the performance of the EAs scale in

respect to the difficulty of the problem. The 3-SAT instances used were in conjunctive

normal form. To ensure fairness, sixty 3-SAT instances were randomly generated,

and each instance was used for a single run of all EAs. 3-SAT is a classic problem in

computer science. It was one of the first problems shown to be NP-Complete and a

wide range of problems can be reduced to an instance of 3-SAT [19, 3].

4.3. PERFORMANCE METRICS

For the ONEMAX problem, the most obvious fitness function for a bitstirng is

simply the number of ones it contains. GRIEWANK tries to minimize the Griewank

function, so the obvious fitness value for a real-valued vector ~x is −fGriewank(~x). A

candidate solution for the DTRAP problem is a bitstring which is the concatenation

of n 4-bit trap functions. So a good choice for the fitness function to use for DTRAP

would be the sum of the individual trap functions. For the 3-SAT problem, the

fitness function is the number of clauses which a candidate solution satisfies. This is

www.manaraa.com

28

-80

-60

-40

-20

 0

 20

 40

 60

 80 -80
-60

-40
-20

 0
 20

 40
 60

 80

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5
 5.5

Figure 4.1: The Griewank function on R2

a commonly used fitness function for EAs solving the 3-SAT problem [11].

For the 3-SAT, DTRAP and GRIEWANK problems, performance was measured

using the Mean Best Fitness (MBF) averaged over 60 runs. The Mean Best Fitness

is the average of the fitnesses of the best individual ever created during multiple runs

of an EA. This metric was chosen in order to measure the average performance one

can expect from the EAs tested, since no two runs of any stochastic algorithm will

necessarily yield the same result. For ONEMAX, all EAs have a high probability

of converging to the optimal solution based on the parameters used as shown in

Table 4.2, so using MBF as a performance metric would not yield much information

about the performance of the EA. So in lieu of the MBF, the number of fitness

evaluations used to obtain the optimal solution averaged over n runs, was used as a

performance metric for the ONEMAX problem. Due to the stochastic nature of EAs,

some statistical test needs to be performed in order to determine to some degree of

certainty whether one EA will outperform another EA on average. The EAs were

www.manaraa.com

29

compared, with their respective performance metric, using the two-sample t-test with

a standard significance level of .05 assuming unequal variances.

www.manaraa.com

30

5. RESULTS

The results, as shown in Table 5.1, were quite surprising. On the DTRAP

problem, the SAOS EAs performed poorly in most cases. They were all outperformed

by OFOS-EA for all values of µ, and performed on par with the other EAs when µ = 1.

The performance of SAOS1-EA and SAOS3-EA decreased as µ increased, especially

when compared to OFOS-EA. While SAOS2-EA did not have the same problems

as the other two SAOS EAs, it was still consistently outperformed by OFOS-EA,

FuBOS-EA, and DiGFuBOS-EA by a statistically significant margin. FuBOS-EA

and DiGFuBOS-Ea faired far better than SAOS-EAs, performing on par with OFOS-

EA when µ = 100, 1000. However, there was a dip in performance when µ = 500

for which they were outperformed by OFOS-EA by a statistically significant margin.

ROS-EA actually performed unexpectedly well. It outperformed all of the other EAs

tested when µ = 100, 500; however, its performance dropped when µ = 1000 for which

it was outperformed by OFOS-EA, FuBOS-EA, and DiGFuBOS-EA by a statistically

significant margin.

Another thing to look at besides performance is how λ changes during the EA’s

execution for FuBOS, DiGFuBOS-EA, and the SAOS EAs on the DTRAP problem.

Figure 5.1 shows λ growing much larger for DiGFuBOS-EA than it does for FuBOS-

EA on the DTRAP problem with µ = 100. Figure 5.2 shows how λ changed during

the execution of the SAOS EAs. λ grows large for SAOS1-EA and SAOS3, but

shrinks halfway through its execution. When looking at how the average fitness of

the population (shown in Figure 5.3) changes during SAOS1-EA and SAOS3-EA’s

execution, it can be seen that λ starts falling as the population’s fitness values start

to converge. λ barely grows for SAOS2-EA; it quickly drops to a smaller, suboptimal

value and remains near that value until it terminates. As shown in Figure 5.4, when

µ = 500, λ decreases in the beginning then increases towards the end of FuBOS-

EA’s execution, while λ for DiGFuBOS-EA increases in the beginning, decreases,

then stays around 175 on average. When µ = 1000, FuBOS and DiGFuBOS shrink

and grow respectively, with λ to a certain range of values for both (as can be seen

in Figure 5.6). The SAOS EAs exhibited similar behavior when µ = 500 and when

www.manaraa.com

31

Table 5.1: Performance of EAs on various problems in terms of the metrics specified
in Section 4 (standard deviation in parentheses, best results are bolded)

Population Size 100 500 1000

DTRAP (in terms of MBF)
FuBOS-EA 831.117 (6.08849) 864.933 (6.88928) 882.867 (7.4352)
DiGFuBOS-EA 833.233 (6.64421) 863.017 (5.99859) 883.1 (7.93452)
OFOS-EA 834.183 (5.46959) 868.9 (6.48511) 884.467 (8.06736)
ROS-EA 834.8 (7.50511) 869.667 (7.06085) 873.083 (8.63576)
SAOS1-EA 831.283 (6.54495) 833.25 (8.9752) 789.883 (7.91221)
SAOS2-EA 823.083 (7.17238) 855.567 (6.98896) 873.217 (6.93564)
SAOS3-EA 831.833 (7.1278) 830.833 (7.30791) 788.917 (7.82792)

ONEMAX (in terms of average number of fitness evaluations used to find optimal solution)
FuBOS-EA 59008.8 (5223.58) 49280.9 (5125.93) 50801.3 (5115.64)
DiGFuBOS-EA 551042 (30322.4) 66471.8 (5241.88) 55918.4 (4335.16)
OFOS-EA 35410.2 (3964.47) 48049 (3710.87) 53297.8 (5426.09)
ROS-EA 145273 (11628.9) 70526.3 (6039.66) 64622.8 (5474.98)
SAOS1-EA 158540 (12930.4) 180857 (10384.5) 314670 (7293.65)
SAOS2-EA 75961 (8980.85) 94652.8 (8218.94) 129282 (5512.72)
SAOS3-EA 167568 (16284) 179243 (12275.2) 314727 (7381.58)

GRIEWANK (in terms of MBF)
FuBOS-EA -0.160202 (0.175902) -0.0121147 (0.00834563) -0.0868882 (0.0348113)
DiGFuBOS-EA -0.540971 (0.503606) -0.0119955 0.0328575) -0.0392013 (0.0190165)
OFOS-EA -0.146447 (0.17793) -0.00409469 (0.0108856) -0.0390263 (0.0172252)
ROS-EA -1.14187 (0.450214) -0.116357 (0.0467904) -0.455314 (0.086007)
SAOS1-EA -0.395596 (0.200672) -2.75214 (0.679632) -6.29603 (1.77951)
SAOS2-EA -0.348629 (0.13839) -1.19705 (0.048372) -1.63009 (0.13839)
SAOS3-EA -0.38458 (0.209234) -2.78335 (0.723493) -6.5625 (1.75996)

3-SAT (in terms of MBF)
FuBOS-EA 1986.15 (2.61932) 1988.63 (2.39421) 1985.83 (2.15381)
DiGFuBOS-EA 1988.48 (2.56575) 1989.33 (2.14994) 1990.53 (1.97878)
OFOS-EA 1989.4 (2.31084) 1990.1 (2.19621) 1990.37 (1.72208)
ROS-EA 1986.45 (2.59117) 1989.98 (2.10152) 1990.18 (2.17172)
SAOS1-EA 1982.8 (3.646) 1988.63 (2.50311) 1988.38 (2.18397)
SAOS2-EA 1984.93 (3.03791) 1989.55 (2.04471) 1990.38 (1.98403)
SAOS3-EA 1982.42 (3.24187) 1988.87 (2.41155) 1990.28 (1.73293)

µ = 1000. Figure 5.5 shows λ monotonically increasing during the execution of

SAOS1-EA and SAOS3, and Figure 5.7 shows λ growing to even larger values. SAOS2-

EA grows λ for approximately the first 10% of the its execution, although λ does not

grow nearly as large as it does for SAOS1-EA and SAOS3-EA. After the initial growth,

λ drops to a lower value and remains near that value until SAOS3-EA terminates.

On the ONEMAX problem, the SAOS EAs perform poorly for all values of µ

when compared to OFOS-EA. They perform increasingly worse as µ increases, but

so does OFOS-EA. Just like on the DTRAP problem, the performance of SAOS1-

EA and SAOS3-EA on ONEMAX is worse than SAOS2-EA. FuBOS-EA performance

monotonically increased as µ increased, outperforming all other EAs tested when µ =

100. DiGFuBOS-EA’s performance increased in a similar manner. The performance

www.manaraa.com

32

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50000 100000 150000 200000

M
ea

n
O

ffs
pr

in
g

S
iz

e

Fitness Evaluations

DiGFuBOS-EA
FuBOS-EA

Figure 5.1: λ over the course of the execution of FuBOS-EA and DiGFuBOS-EA on
the DTRAP problem with µ = 100 averaged over 60 runs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50000 100000 150000 200000

M
ea

n
O

ffs
pr

in
g

S
iz

e

Fitness Evaluations

SAOS-EA 1
SAOS-EA 2
SAOS-EA 3

Figure 5.2: λ over the course of the execution of the SAOS EAs on the DTRAP
problem with µ = 100 averaged over 60 runs

www.manaraa.com

33

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 50000 100000 150000 200000

M
ea

n
B

es
t F

itn
es

s

Fitness Evaluations

SAOS-EA 1
SAOS-EA 2
SAOS-EA 3

Figure 5.3: Fitness of best individual over the course of the execution of the SAOS
EAs on the DTRAP problem with µ = 100 averaged over 60 runs

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000

M
ea

n
O

ffs
pr

in
g

S
iz

e

Fitness Evaluations

DiGFuBOS-EA
FuBOS-EA

Figure 5.4: λ over the course of the execution of FuBOS-EA and DiGFuBOS-EA on
the DTRAP problem with µ = 500 averaged over 60 runs

www.manaraa.com

34

 0

 500

 1000

 1500

 2000

 2500

 0 50000 100000 150000 200000

M
ea

n
O

ffs
pr

in
g

S
iz

e

Fitness Evaluations

SAOS-EA 1
SAOS-EA 2
SAOS-EA 3

Figure 5.5: λ over the course of the execution of the SAOS EAs on the DTRAP
problem with µ = 500 averaged over 60 runs

 0

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000

M
ea

n
O

ffs
pr

in
g

S
iz

e

Fitness Evaluations

DiGFuBOS-EA
FuBOS-EA

Figure 5.6: λ over the course of the execution of FuBOS-EA and DiGFuBOS-EA on
the DTRAP problem with µ = 1000 averaged over 60 runs

www.manaraa.com

35

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50000 100000 150000 200000

M
ea

n
O

ffs
pr

in
g

S
iz

e

Fitness Evaluations

SAOS-EA 1
SAOS-EA 2
SAOS-EA 3

Figure 5.7: λ over the course of the execution of the SAOS EAs on the DTRAP
problem with µ = 1000 averaged over 60 runs

of DiGFuBOS-EA when µ = 100 was the worst out of all EAs tested, yet was only

outperformed by OFOS-EA and FuBOS-EA when µ = 500, 1000. ROS-EA performed

poorly, being outperformed by OFOS-EA, FuBOS-EA, and DiGFuBOS-EA when

µ = 500, 1000 and being outperformed by OFOS-EA and FuBOS-EA when µ = 100.

Looking at the GRIEWANK problem, a pattern starts to emerge. The SAOS

EAs perform poorly on this problem too when compared to OFOS-EA. While the

performance of the SAOS EAs degrade as µ increases, SAOS2-EA’s performance

degrades less than the performance of the other two SAOS EAs. FuBOS-EA was

outperformed by OFOS-EA for all values of µ by a statistically significant margin.

DiGFuBOS-EA was outperformed by OFOS-EA by a statistically significant margin

when µ = 100, 500; however, it was only outperformed by OFOS-EA by a statistically

insignificant margin when µ = 1000. Also, DiGFuBOS-EA was outperformed by not

only FuBOS-EA, but the SAOS EAs when µ = 100. ROS-EA was outperformed by

all other EAs when µ = 100; however, it outperformed the SAOS EAs, FuBOS-EA,

www.manaraa.com

36

Table 5.2: Performance of EAs on the 3-SAT problem for different clause to variable
ratios (standard deviation in parentheses, best results are bolded) with
µ = 500

Ratio 2 3 4 6

FuBOS-EA 1000 (0) 1498.43 (1.10101) 1988.63 (2.39421) 2941.5 (3.52846)
DiGFuBOS-EA 999.983 (0.128019) 1498.5 (0.991632) 1989.22 (2.26636) 2940.13 (3.6399)
OFOS-EA 1000 (0) 1498.4 (0.934523) 1990.1 (2.19621) 2941.62 (3.63818)
ROS-EA 1000 (0) 1498.63 (0.948098) 1989.98 (2.10152) 2942.03 (3.08203)
SAOS1-EA 999.983 (0.128019) 1498.5 (0.991632) 1988.63 (2.50311) 2940.13 (3.6399)
SAOS2-EA 1000 (0) 1498.6 (1.05198) 1989.55 (2.04471) 2941.77 (3.28819)
SAOS3-EA 1000 (0) 1498.22 (1.03427) 1988.87 (2.41155) 2939.8 (4.13254)

and DiGFuBOS-EA when µ = 500, and the SAOS EAs when µ = 1000.

On the 3-SAT problem, the performances of the EAs were unexpectedly simi-

lar. When µ = 100, OFOS-EA outperformed all other EAs, except DiGFuBOS-EA,

by statistically significant margins. FuBOS-EA, ROS-EA, and DiGFuBOS-EA per-

formed on par with each other, while the SAOS EAs performed the worst. When

µ = 500, each of the MBFs were close to one another, with FuBOS-EA being out-

performed by all other EAs. FuBOS-EA performed worse when µ = 1000 compared

to the other EAs by a wider margin than when using smaller values of µ. While the

other EAs performed similarly well, DiGFuBOS-EA actually outperformed all other

EAs. When the clause to variable ratio varies, the results (shown in Table 5.2) are

similar. When the ratio was 2, all EAs except for SAOS2-EA and DiGFuBOS-EA

solved every 3-SAT instance. When the ratio was 3, the performances of the EAs

were quite even. Significant differences between the performances of the EAS were

still not seen when the clause to variable ratio was 6.

FuBOS-EA and OFOS-EA were compared to the previous offspring sizing EAs,

Jansen-EA and Hansen-EA; the results of these experiments are in Table 5.3. On

the DTRAP problem, FuBOS-EA outperformed Hansen-EA and Jansen-EA by a

statistically significant margin, while being outperformed by OFOS-EA. OFOS-EA

outperformed all other EAs on the ONEMAX problem, while FuBOS-EA performed

the worst. OFOS-EA outperformed all other EAs on the 3-SAT problem. In fact,

when µ = 1, OFOS-EA outperformed all other EAs on the 3-SAT problem for all

values of µ. On the GRIEWANK problem, Hansen-EA outperformed the other EAs,

while OFOS-EA performed better than Jansen-EA and FuBOS-EA.

www.manaraa.com

37

Table 5.3: Performance of some offspring sizing EAs on various problems in terms of
metrics specified in Section 4 with µ = 1 (standard deviation in parenthe-
ses, best results are bolded)

Population Size DTRAP ONEMAX 3-SAT GRIEWANK

FuBOS-EA 815.35 (7.03758) 98253.1 (6371.98) 1980.47 (4.39874) -2565.73 (480.756)
OFOS-EA 818.483 (7.07223) 39687.5 (9969.84) 1996.82 (1.52197) -1860.75 (776.034)
Hansen-EA 789.6 (5.35164) 42558.4 (7388.13) 1987.97 (2.76265) -203.854 (91.5486)
Jansen-EA 810.067 (6.51119) 64282.8 (10290) 1944.52 (56.6764) -2702.76 (695.39)

www.manaraa.com

38

6. DISCUSSION

6.1. RANDOM OFFSPRING SIZING

The most surprising results of the experiments are the fact that ROS-EA worked

very well on the DTRAP problem, outperforming all other EAs when µ = 1, 500,

which supports the theory that using dynamic parameter values has the potential to

the performance of EAs [7]. This is likely due to the range of values ROS-EA chooses

λ from. Since it chooses λ from [1, 1000] with uniform probability, the expected value

of λ is approximately 500. As shown in Table 4.7, the values OFOS-EA used for λ

when µ = 100, 500 on the DTRAP problem were 675 and 525, respectively; however,

the value OFOS-EA used for λ when µ = 1000 was 75. The difference between the

λ used by OFOS-EA and the expected value of λ for ROS-EA when µ = 1000 is

much greater than the difference beteween these two values when µ = 100, 500. This

is why ROS-EA performs poorly when µ = 1000. Another reason might simply be

luck. OFOS-EA used a fixed value for λ that might be suboptimal during parts

of the EA’s execution. Since ROS-EA uses a wide range of values for λ with each

generation and completely ignores the state of the search when choosing a new value,

ROS-EA might simply make a lucky guess. This “strategy” can yield great success

or great failure, which would explain why ROS-EA has large standard deviations on

the DTRAP problem.

ROS-EA also performed well on the 3-SAT problem. In fact, the difference in

performance of all the EAs on 3-SAT was small. 3-SAT is deceptive like DTRAP, but

in a different way. With DTRAP, the entire bitstring does not need to be changed to

escape from a local optimum, only the bits of the “stuck” traps need to be changed.

For 3-SAT, escaping from a local optimum can require changing every bit of the

bitstring due to the depenencies between the variables caused by the 3-SAT instance

being solved. So having enough offspring to perform a proper search of the search

space does not have much impact on the search since getting caught in a local optimum

can require huge changes to the genes of the individuals to escape. This would explain

www.manaraa.com

39

why there was not much variation in the performance of the EAs on 3-SAT.

6.2. SELF-ADAPTIVE OFFSPRING CREATION

One of SAOS’s major problems is the fact that λ is heavily dependent on µ.

As the results in Section 5 show, the performance of the SAOS EAs, when compared

to the other EAs, decreased as µ increased on the GRIEWANK, DTRAP, and ONE-

MAX problems. This can be attributed to a variety of reasons. Consider the initial

population of an EA using SAOS. Every individual in the initial population has an

offWant value of 1. Since SAOS allows every individual to have as many living

offspring as it wants, there are µ
2

offspring created that generation. When the average

offWant of the population grows, the amount of offspring being produced grows at

a factor of µ
2
.

An individual is penalized for how many living offspring it has, to prevent the

average offWant from growing to large, sub-optimal values, and thus preventing λ

from growing too large. However, each score function either over-penalizes or under-

penalizes for the amount of offspring had. Consider the DTRAP problem. The rate

at which λ grew for SAOS1-EA and SAOS3-EA increased as µ increase. When the

values for λ grew to be much larger than what was used for OFOS-EA, SAOS1-EA

and SAOS3-EA performed poorly. These large values of λ caused SAOS1-EA and

SAOS3-EA to explore more than necessary, causing these EAs to perform poorly due

to lack of exploitation. For SAOS2-EA, the problem was the opposite; λ did not grow

large enough to properly explore the search space. This is why SAOS2-EA performed

better than the other SAOS EAs, but was outperformed by FuBOS-EA, OFOS-EA,

and DiGFuBOS-EA. The performance of the SAOS EAs on the GRIEWANK and

ONEMAX problems is evidence that the SAOS EAs might exhibit this behavior in

general.

The problem is balancing the need to prevent λ from growing too large with the

need to have offspring to explore the search space. This balance is heavily influenced

by µ and the problem the EA is trying to solve. The introduction of constants to the

score functions could possibly fix this issue, but there are some problems with this.

Initial tests show that performance is not less sensitive to any constant introduced to

a score function than it is to λ. This means that tuning this constant would not be

www.manaraa.com

40

any easier to do than tuning λ. Also, it might be possible that adding a constant will

not completely solve the balance issue: µ still places a lower bound on λ. To solve this

problem, it might be necessary to control µ and λ simultaneously. This way, the effect

µ has on λ can be taken into consideration when choosing µ. Another way to solve

this problem would be to not allow individuals to have as many offspring as they

want. An unsatisfied parent could possibly have no offspring during a generation;

thus, an increase in µ would not necessarily result in an increase in λ.

6.3. FUTILITY-BASED OFFSPRING SIZING

FuBOS solves one of the main problems with SAOS: the strong connection

between λ and µ. By making λ a choice made at the population level instead of at

the individual level, µ has less of an influence on λ. This opens up the possibility

of having a method for controlling λ that can scale well with increasing µ. FuBOS’s

goal is to maximize the amount of offspring created per generation and minimize

wasted computational effort associated with creating too many offspring. This is

to help prevent premature convergence by exploring the search space as much as

possible. On a simple problem with no non-global optima, like ONEMAX, there is

less emphasis on exploration and more emphasis on exploitation due to how difficult

it is to prematurely converge. This would explain why OFOS-EA, Hansen-EA, and

Jansen-EA reached the optimal solution faster than FuBOS-EA on the ONEMAX

problem.

FuBOS performed well on the experiments for larger values of µ. One reason

for this might be due to how FuBOS benefits from a diverse pool of parents and

a parent selection operator that has low selection pressure. Under such conditions,

the parents selected are more likely to differ, thus creating more diverse offspring.

Since FuBOS attempts to maximize the number of offspring created per generation,

there is likely to be a large pool of diverse offspring under these conditions. For

the experiments in Section 5, a large population resulted in a large pool of potential

parents. A larger, randomly seeded initial population has more diversity than a

smaller, randomly seeded initial population.

Another reason might be due to how FuBOS decides when the mating process

should stop. As previously mentioned, FuBOS terminates the mating process if the

www.manaraa.com

41

change in average fitness of the offspring drops below a certain threshold. Therefore,

FuBOS terminates prematurely whenever successive offspring are generated which

happen to have similar fitness values, even though there may still be an abundance of

search space left to explore. This is more likely to happen with a smaller population,

because there will be a smaller pool of parents to choose from. Also, if the λ to µ ratio

is high (which seemed to be beneficial for smaller populations), there will be more

competition for a spot in the population simply due to the amount of individuals

vying for a single spot.

Another problem with FuBOS is that it is a serial method; the offspring must

be created and examined one at a time. This means that any EA using FuBOS

cannot evaluate the fitness of the offspring in parallel. This also means that the order

in which the offspring are created matters. There are situations where FuBOS can

be fooled into terminating the creation of offspring; however, further analysis must

be done in order to see how likely such situations occur during the actual execution

of an EA. FuBOS’s biggest problem lies in determining when the change in average

fitness is negligible, which is equivalent to determining what value to use for ε. While

the value used for ε worked well for the test problems utilized, this value might

result in degraded performance on a wide range of different problem classes. The

fitness function itself might also cause problems for FuBOS. A fitness function whose

range is small (e.g., (0, 1)) or varies in magnitude could have a negative effect on the

performance of an EA using FuBOS. This might explain the results of the experiments

using the GRIEWANK function. However, it is important to note that FuBOS-EA

outperforms OFOS-EA in terms of performance per fitness evaluations, considering

how many fitness evaluations were required to tune OFOS-EA (see Table 4.6).

6.4. DIVERSITY-GUIDED FUTILITY-BASED OFFSPRING SIZING

DiGFuBOS attempts to rectify some of the problems present in FuBOS. The

biggest problem with FuBOS was the choice of ε, DiGFuBOS automates this decision.

Based on the results presented in Section 5, DiGFuBOS preforms quite well on a

wide range of problems. Furthermore, the results of the experiments show that the

performance of DiGFuBOS-EA does not degrade as µ increases; on the contrary, the

performance often increased when compared to the other EAs. However, DiGFuBOS-

www.manaraa.com

42

EA performed very poorly when compared to OFOS-EA and even FuBOS-EA on the

ONEMAX and GRIEWANK problems when µ = 100. DiGFuBOS looks at the genetic

diversity of the population when setting ε and determining when to stop the mating

process. Because of this, DiGFuBOS-EA tends to allow more offspring to be created

when the diversity is low. While this is a good thing in general, this is a problem with

the ONEMAX problem. The ONEMAX problem is a very simple problem; since there

are no local optima that are suboptimal, there is no need to worry about premature

convergence. Thus, there is no need to allow more offspring to be had as diversity

decreases. Since the only way DiGFuBOS can measure a problem’s difficulty is the

length of the bitstring or real-valued vector, DiGFuBOS wastes fitness evaluations

doing more exploration than necessary.

Using fitness values as a measure of diversity can be problematic because a

one-to-one mapping from fitness values to genotypes does not necessarily exist. By

examining the genes instead of the fitness values of individuals, DiGFuBOS is able

to make a better informed decision about when to stop the mating process than

FuBOS. This allows DiGFuBOS to outperform FuBOS on more than two-thirds of the

experiments ran on the DTRAP, GRIEWANK, and 3-SAT problems. Unfortunately,

generality is sacrificed for performance: an EA using DiGFuBOS is restricted to

using bitstrings and real-valued vectors for representations of candidate solutions.

Also, DiGFuBOS has a requirement of µ ≥ 2 since diversity is always zero when

µ = 1; DiGFuBOS has no real effect on λ in that situation. Even though DiGFuBOS

is more restrictive than FuBOS, DiGFuBOS tunes λ without the addition of any user-

set parameters. Furthermore, the performance of DiGFuBOS-EA is comparable in

performance to OFOS-EA on a wide variety of test problems, and surpasses OFOS-EA

in terms of performance per fitness evaluations.

www.manaraa.com

43

7. CONCLUSIONS

EAs are robust methods for solving difficult problems; however, the number of

parameters that must be tuned a priori and the expertise required to set these pa-

rameters hinders the adoption of EAs by non-experts. While methods for controlling

the parameters of an EA have been proposed, little has been done towards controlling

the offspring size of an EA. This thesis explored controlling λ, proposed three novel

methods for controlling λ, and compared their performance on a diverse set of test

problems.

The first method proposed, SAOS, allowed each individual to specify the number

of offspring they would like to have and made each individual “support” their offspring

though penalizing individuals based on how many living offspring they have. However,

this method performed poorly on most test problems when compared to the highly

tuned OFOS-EA. Also, the performance of an EA using SAOS often degrades as

µ increases. This is due to SAOS failing to find a proper balance between having

offspring to explore the search space and preventing λ from increasing to large, sub-

optimal values. While the introduction of parameters could fix this issue, performance

is not less sensitive to these parameters.

The second method proposed, FuBOS, solves some of the problems associated

with SAOS. FuBOS determines when the computational effort required to create

additional offspring outweighs how much these additional offspring contribute to the

search. This is done by looking at the change in the average fitness of the offspring

with each offspring created. FuBOS-EA was shown to outperform the few previously

published offspring sizing control methods for many complex problem instances. Also,

FuBOS-EA performed on par with the highly tuned OFOS-EA for many of the test

problems using various population sizes, while being far more efficient in terms of

fitness evaluations. Another advantage of FuBOS is that it alleviates the user from

having to set λ (or even an initial value for λ), instead replacing it with a threshold

value, ε, to which performance is far less sensitive.

The final method proposed, DiGFuBOS, extends the concept of FuBOS by dy-

namically changing the threshold value, ε, every generation based on the genetic

www.manaraa.com

44

diversity of the population, the population size, and the problem size. Also, DiGFu-

BOS looks at the change in genetic diversity of the offspring instead of the change

in average fitness. Unlike FuBOS, DiGFuBOS requires a representation-specific di-

versity metric which can be difficult to define for some representations. This thesis

presents such diversity metrics for bitstring and real-valued vector representations.

DiGFuBOS-EA was shown to outperform FuBOS-EA for many complex problem in-

stances and perform on par with the highly tuned OFOS-EA for various population

sizes on most test problems. One major advantage DiGFuBOS has over FuBOS is

the automation of ε, making DiGFuBOS far easier to use than FuBOS.

The following studies can be important extensions of the work presented in this

thesis:

• EAs are known to be “embarrassingly parallel” algorithms. Embarrassingly

parallel algorithms are able to be broken down into a number of smaller, inde-

pendent subtasks with minimum effort. Often with EAs, the fitness evaluation

is the most time consuming portion of the algorithm. In the case of standard

EAs, the fitness evaluations to be performed during any generation are inde-

pendent from one another; thus, they can be performed in parallel. FuBOS

and DiGFuBOS are serial methods: they look at each offspring created one at

a time. Thus, any EA using FuBOS or DiGFuBOS cannot be parallelized. One

way of fixing this is to look at the change in average fitness of the individuals

(or genetic diversity in the case of DiGFuBOS) with each k individuals created.

Another way of fixing this problem is to consider the offspring as a set of in-

dividuals and finding a confidence interval on the mean of the fitness values.

When the width of that confidence interval grows small enough, stop producing

offspring.

• The performance of SAOS-EA often degrades as µ increases due to the number

of offspring being created per generation increasing as µ does. However, different

parameter values are optimal at different stages of an EA’s execution [7]. It is

possible that µ will need to change during the execution of an EA using SAOS

in order to keep λ from increasing to large, sub-optimal values. FuBOS and

DiGFuBOS might also benefit from µ being controlled. Combining two different

www.manaraa.com

45

parameter control methods can improve the performance of an EA beyond what

each method can do alone [15].

• The main idea behind FuBOS and DiGFuBOS, producing offspring until it

becomes futile to produce any more, might be able to be applied to other EA

strategy parameters. For example, consider the population size of an EA. One

way of applying this idea to µ would be starting EA with µ = 1. After k

generations, increase the value of µ by 1. k generations later, compare the rate

of change of the average fitness of the population when µ = 1 with the rate of

change of the average fitness of the population when µ = 2. If the difference

between those rates is large, then increment µ and repeat the process. However,

if the difference between those rates is small, then stop incrementing µ.

• DiGFuBOS currently works for bitstring and real-valued vector representations.

It would be beneficial to generalize DiGFuBOS to allow it to be applicable to

EAs using different representations or simply extending DiGFuBOS to work

with more representations. Generalizing DiGFuBOS is a non-trivial task: one

undertaking this task would have to consider the different representations that

exist (and can possibly exist in the future) and the different diversity metrics

each representation may have. It is likely that extending DiGFuBOS to different

representations is a more feasible task.

www.manaraa.com

APPENDIX

www.manaraa.com

47

Lemma 1. offdiversityN = 0 if, and only if, all offspring have identical genes.

Proof. Clearly,

offdiversityN = 0⇔
L∑

i=1

N∑
j=1

(xij − ci)
2 = 0⇔ (xij − ci)

2 = 0

for all offspring j where xij is that offspring’s i-th gene. Thus,

(xij − ci)
2 = 0⇔ xij − ci = 0⇔ xij = ci.

Since ci is the average of gene i over the offspring, this means all offspring j have the

same i-th gene, which is equivalent to all offspring having identical genes.

Theorem 1. If ε = 0 and there exist two offspring whose genes differ, then Inequal-

ity 13 will always hold.

Proof. Let xa and xb be two offspring who differ in their k-th gene. So offdiversityN 6=
0 by Lemma 1. Thus,

offdiversityN−1

offdiversityN

< 1− ε = 1. (.16)

Clearly, offdiversityN > 0, so simplifying yields

offdiversityN−1

offdiversityN

< 1 (.17)

offdiversityN−1 < offdiversityN (.18)

offdiversityN − offdiversityN−1 > 0 (.19)

L∑
i=1

N∑
j=1

(xij − ci)
2 −

L∑
i=1

N−1∑
j=1

(xij − ci)
2 > 0 (.20)

L∑
i=1

(
N∑

j=1

(xij − ci)
2 −

N−1∑
j=1

(xij − ci)
2) > 0 (.21)

L∑
i=1

(xiN − ci)
2 > 0 (.22)

www.manaraa.com

48

Since the other offspring cannot be the same as xa and xb due to xa 6= xb, every other

offspring differs in their k-th gene from either xa or xb. Since ci is the average of the

i-th gene over all offspring, and all offspring differ from at least one other offspring

in the k-th gene, then

xkN − ck 6= 0 (.23)

(xkN − ck)
2 > 0. (.24)

So this means that Inequality .22 will always hold, thus Inequality 13 will always

hold.

www.manaraa.com

49

BIBLIOGRAPHY

[1] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Aca-

demic Publishers, Norwell, MA, USA, 1987.

[2] J. Arabas, Z. Michalewicz, and J. Mulawka. GAVaPS-a genetic algorithm with

varying population size. In Proceedings of the First IEEE Conference on Evo-

lutionary Computation, 1994. IEEE World Congress on Computational Intelli-

gence, volume 1, pages 73–78, June 1994.

[3] S. A. Cook. The Complexity of Theorem-Proving Procedures. In STOC ’71:

Proceedings of the third annual ACM symposium on Theory of computing, pages

151–158, New York, NY, USA, 1971. ACM.

[4] L. D. Davis and M. Mitchell. Handbook of genetic algorithms. Van Nostrand

Reinhold, 1991.

[5] K. De Jong. Parameter Setting in EAs: a 30 Year Perspective. In F. G. Lobo,

C. F. Lima, and Z. Michalewicz, editors, Parameter Setting in Evolutionary Al-

gorithms, pages 1–18. Springer-Verlag, 2007.

[6] K. Deb and D. E. Goldberg. Analyzing Deception in Trap Functions. In Pro-

ceedings of the Second Workshop on Foundations of Genetic Algorithms, pages

93–108, July 1992.

[7] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control in Evolution-

ary Algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141,

1999.

[8] A. E. Eiben, B. Jansen, Z. Michalewicz, and B. Paechter. Solving CSPs using self-

adaptive constraint weights: how to prevent EAs from cheating. In Proceedings

of GECCO 2000 - the Genetic and Evolutionary Computation Conference, pages

128–134, July 2000.

[9] A. E. Eiben, M. C. Schut, and A. R. de Wilde. Is self-adaptation of selection

pressure and population size possible? - a case study. In T. P. Runarsson, H.-G.

www.manaraa.com

50

Beyer, E. K. Burke, J. J. M. Guervós, L. D. Whitley, and X. Yao, editors, PPSN,

volume 4193 of Lecture Notes in Computer Science, pages 900–909. Springer,

2006.

[10] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,

2003.

[11] J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary Algorithms for the Satis-

fiability Problem. Evolutionary Computation, 10(1):35–50, 2002.

[12] A. O. Griewank. Generalized Descent for Global Optimization. Journal of Op-

timization Theory and Applications, 34(1):11–39, 1981.

[13] N. Hansen, A. Gawelczyk, and A. Ostermeier. Sizing the Population with Respect

to the Local Progress in (1,λ)-Evolution Strategies-A Theoretical Analysis. In

Proceedings of CEC 1995 - The IEEE International Conference on Evolutionary

Computation, volume 1, pages 80–85, 1995.

[14] N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in

Evolution Strategies. Evolutionary Computation, 9(2):159–195, 2001.

[15] E. A. Holdener. The Art of Parameterless Evolutionary Algorithms. PhD thesis,

Missouri University of Science and Technology, 2008.

[16] E. A. Holdener and D. R. Tauritz. Learning offspring optimizing mate selection.

In Proceedings of GECCO 2008 - the Genetic and Evolutionary Computation

Conference, pages 1109–1110, New York, NY, USA, 2008. ACM.

[17] C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-

objective Optimization. Evolutionary Computation, 15(1):1–28, 2007.

[18] T. Jansen, K. A. D. Jong, and I. A. Wegener. On the Choice of the Offspring Pop-

ulation Size in Evolutionary Algorithms. Evolutionary Computation, 13(4):413–

440, 2005.

[19] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.

Plenum Press, 1972.

www.manaraa.com

51

[20] M. Locatelli. A Note on the Griewank Test Function. Journal of Global Opti-

mization, 25(2):169–174, 2003.

[21] Z. Michalewicz and M. Schoenauer. Evolutionary Algorithms for Constrained

Parameter Optimization Problems. Evolutionary Computation, 4(1):1–32, 1996.

[22] R. W. Morrison and K. A. D. Jong. Measurement of Population Diversity. In

Selected Papers from the 5th European Conference on Artificial Evolution, pages

31–41, London, UK, 2002. Springer-Verlag.

[23] I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach

prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

[24] G. Rudolph. Self-Adaptation and Global Convergence: A Counter-Example. In

P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, editors,

Proceedings of the Congress on Evolutionary Computation, volume 1, pages 646–

651, Mayflower Hotel, Washington D.C., USA, July 1999. IEEE Press.

[25] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley &

Sons, Inc., New York, NY, USA, 1981.

[26] E. A. Smorodkina and D. R. Tauritz. Greedy Population Sizing for Evolutionary

Algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 2181–2187, Sept. 2007.

[27] E. A. Smorodkina and D. R. Tauritz. Toward Automating EA Configuration: the

Parent Selection Stage. In Proceedings of the IEEE Congress on Evolutionary

Computation, pages 63–70, Sept. 2007.

[28] R. Ursem. Diversity-Guided Evolutionary Algorithms. Parallel Problem Solving

from Nature – PPSN VII, pages 462–471, 2002.

www.manaraa.com

52

VITA

André Chidi Nwamba was born on November 21, 1984 in Huntsville, Alabama.

He graduated from Hazelwood Central High School in May 2007 and enrolled as an

undergraduate at University of Missouri-Rolla (now Missouri University of Science

and Technology) in the fall of that year. He received a BS in both Computer Science

and Applied Math in May 2007, and enrolled in the Computer Science graduate

program later in the fall of that year. He received his master’s degree in August 2009.

	Automated offspring sizing in evolutionary algorithms
	Recommended Citation

	Automated offspring sizing in evolutionary algorithms

